

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

CLASS 10TH WORKSHEET CHAPTER – MOLE CONCEPT AND STIOCHIOMETRY

Exercise 5A

Question 1(a)

Calculate the volume of oxygen at STP required for the complete combustion of 100 litres of carbon monoxide at the same temperature and pressure.

$$2\text{CO} + \text{O}_2 \longrightarrow 2\text{CO}_2$$

Answer

From equation:

$$2CO + O_2 \rightarrow 2CO_2$$

2 vol. : 1 vol. \rightarrow 2 vol.

[By Gay Lussac's law]

2 V of CO requires = 1V of O_2

∴ 100 litres of CO requires = $\frac{1}{2}$ x 100 = 50 litres.

Hence, required volume of oxygen is 50 litres.

Question 1(b)

200 cm³ of hydrogen and 150 cm³ of oxygen are mixed and ignited, as per the following reaction,

$$2H_2 + O_2 \longrightarrow 2H_2O$$

What volume of oxygen remains unreacted?

Answer

$$2H_2 + O_2 \rightarrow 2H_2O$$

2 vol. : 1 vol. \rightarrow 2 vol.

2 Vol. of hydrogen reacts with 1 Vol. of oxygen

 $\therefore 200 \text{ cm}^3$ of hydrogen reacts with $=\frac{1}{2} \times 200 = 100 \text{ cm}^3$ of oxygen.

Hence, unreacted oxygen is $150 - 100 = 50 \text{cm}^3$

Question 2

24 cc Marsh gas (CH₄) was mixed with 106 cc oxygen and then exploded. On cooling, the volume of the mixture became 82 cc, of which, 58 cc was unchanged oxygen. Which law does this experiment support? Explain with calculations.

Answer

This experiment supports Gay-Lussac's law of combining volumes.

Since the unchanged oxygen is 58 cc so, used oxygen 106 - 58 = 48 cc

According to Gay-Lussac's law, the volumes of gases reacting should be in a simple ratio.

$$CH_4 + 2O_2 \rightarrow 2CO_2 + H_2O$$

1 vol. : 2 vol.
24 cc : 48 cc

Hence, methane and oxygen are in the ratio 1:2.

Question 3

What volume of oxygen would be required to burn completely 400 ml of acetylene [C₂H₂]? Also calculate the volume of carbon dioxide formed.

$$2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O$$
 (1)

Answer

[By Gay Lussac's law]

2 Vol. of C₂H₂ requires 5 Vol. of oxygen

∴ 400 ml C_2H_2 will require $\frac{5}{2}$ x 400

= 1000 ml of Oxygen

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Hence, required volume of oxygen = 1000 ml

Similarly,

2 Vol. of C₂H₂ produces 4 Vol. of Carbon dioxide

- ∴ 400 ml of C₂H₂ produces $\frac{4}{2}$ x 400
- = 800 ml of Carbon dioxide

Hence, carbon dioxide produced = 800 ml

Ouestion 4

 $112~\text{cm}^3$ of H_2S (g) is mixed with $120~\text{cm}^3$ of Cl_2 (g) at STP to produce HCl (g) and sulphur (s). Write a balanced equation for this reaction and calculate

- (i) the volume of gaseous product formed
- (ii) composition of the resulting mixture

Answer

$$H_2S$$
 + Cl_2 \rightarrow 2HCl + S
1 vol. : 1 vol. \rightarrow 2 vol. : 1 vol.

(i) At STP,

1 mole gas occupies = 22.4 L.

1 mole H_2S gas produces = 2 moles HCl gas,

- ∴ 22.4 L H₂S gas produces
- $= 22.4 \times 2$
- = 44.8 L HCl gas.

Hence, 112 cm³ H₂S gas will produce

- $= 112 \times 2$
- $= 224 \text{ cm}^3 \text{ HCl gas.}$

Hence, 224 cm³ HCl gas is produced.

(ii) 1 mole H_2S gas consumes = 1 mole Cl_2 gas.

Hence, $22.4 L H_2S$ gas consumes = $22.4 L Cl_2$ gas at STP.

 \therefore 112 cm³ H₂S gas consumes = 112 cm³ Cl₂ gas.

 $120 \text{ cm}^3 - 112 \text{ cm}^3 = 8 \text{ cm}^3 \text{ Cl}_2 \text{ gas remains unreacted.}$

Hence, the composition of the resulting mixture is 224 cm³ HCl gas + 8 cm³ Cl₂ gas.

Question 5

1250 cc of oxygen was burnt with 300 cc of ethane $[C_2H_6]$. Calculate the volume of unused oxygen and the volume of carbon dioxide formed:

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

Answer

[By Gay Lussac's law]

2 Vol. of C₂H₆ requires 7 Vol. of oxygen

- \therefore 300 cc C₂H₆ will require $\frac{7}{2}$ x 300
- = 1050 cc of Oxygen

Hence, unused oxygen = 1250 - 1050 = 200 cc

Similarly,

2 Vol. of C₂H₆ produces 4 Vol. of carbon dioxide

- $\therefore 300 \text{ cc } C_2H_6 \text{ produces } \frac{4}{2} \times 300$
- = 600 cc of Carbon dioxide

Hence, carbon dioxide produced = 600 cc.

Question 6

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

What volume of oxygen at STP is required to affect the combustion of 11 litres of ethylene [C₂H₄] at 273°C and 380 mm of Hg pressure?

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$

Answer

 $\mathrm{C_2H_4} \quad + \quad \mathrm{3O_2} \quad \longrightarrow \quad \mathrm{2CO_2} + \mathrm{2H_2O}$

1 vol. : 3 vol. 11 lit : 33 lit

STP	Given Values
$P_1 = 760 \text{ mm of Hg}$	$P_2 = 380 \text{ mm of Hg}$
$V_1 = x \text{ lit}$	$V_2 = 33 \text{ lit}$
$T_1 = 273 \text{ K}$	$T_2 = 273 + 273 \text{ K} = 546 \text{ K}$

Using the gas equation,

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Substituting the values we get,

$$\frac{760 \times x}{273} = \frac{380 \times 33}{546} x = \frac{380 \times 33 \times 273}{546 \times 760} x = \frac{3,423,420}{414,960} x = 8.25 \text{ lit}$$

Hence, volume of oxygen required = 8.25 lit.

Question 7

Calculate the volume of HCl gas formed and chlorine gas required when 40 ml of methane reacts completely with chlorine at STP.

$$CH_4 + 2Cl_2 \longrightarrow CH_2Cl_2 + 2HCl$$

Answer

volume of HCl gas formed = ?

[By Gay Lussac's law]

1 Vol of methane produces = 2 Vol. HCl

∴ 40 ml of methane produces = 80 ml HCl

volume of chlorine gas required = ?

For 1 Vol of methane = 2V of Cl_2 required

 \therefore for 40 ml of methane = 40 x 2 = 80 ml of Cl₂ is required.

Hence, volume of HCl gas formed = 80 ml and chlorine gas required = 80 ml

Question 8

What volume of propane is burnt for every 500 cm³ of air used in the reaction under the same conditions? (Assuming oxygen is 1/5th of air)

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Answei

Given, oxygen is $1/5^{th}$ of air $=\frac{1}{5}$ of $500 = 100 \text{ cm}^3$

[By Gay Lussac's law]

5 Vol. of O₂ requires 1 Vol. of propane

 \therefore 100 cm³ of O₂ will require = $\frac{1}{5}$ x 100 = 20 cm³

Hence, propane burnt = $20 \text{ cm}^3 \text{ or } 20 \text{ cc}$

Saar hed

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Question 9

450 cm³ of nitrogen monoxide and 200 cm³ of oxygen are mixed together and ignited. Calculate the composition of the resulting mixture.

 $2NO + O_2 \rightarrow 2NO_2$

Answer

 $2NO + O_2 \rightarrow 2NO_2$ $2 \text{ vol.} : 1 \text{ vol.} \rightarrow 2 \text{ vol.}$

[By Gay Lussac's law]

1 Vol. of O_2 reacts with = 2V of NO

200 cm³ oxygen will react with

 $= 200 \times 2$

 $=400 \text{ cm}^3 \text{ of NO}$

 \therefore remaining NO is 450 - 400 = 50 cm³

 $NO_2 = ?$

1 Vol. of O_2 produces 2 Vol. of NO_2

 \therefore 200 cm³ of oxygen produces = $\frac{2}{1}$ x 200 = 400cm³

Hence, NO_2 produced = 400 cm³ and unused oxygen is 50 cm³, so total mixture = 400 + 50 = 450 cm³

Question 10

If 6 litres of hydrogen and 4 litres of chlorine are mixed and exploded and if water is added to the gases formed, find the volume of the residual gas.

Answer

 $\begin{array}{cccc} \mathrm{H_2} & + & \mathrm{Cl_2} & \rightarrow & \mathrm{2HCl} \\ \mathrm{1 \, vol.} & : & \mathrm{1 \, vol.} & \rightarrow & \mathrm{2 \, vol} \end{array}$

[By Gay Lussac's law]

1 Vol. of chlorine reacts with = 1 Vol. of hydrogen

∴ 4 litres of chlorine will react with only 4 litres of hydrogen,

hence, 6 - 4 = 2 litres of hydrogen will remain unreacted.

Since, vol. of HCl gas formed is twice that of chlorine used,

 \therefore vol. of HCl formed will be 4 x 2 = 8 litres However HCl dissolves in water.

Hence, 2 litres of hydrogen is the residual gas, as HCl formed dissolves in water.

Question 11

Ammonia may be oxidised to nitrogen monoxide in the presence of a catalyst according to the following equation.

 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

If 27 litres of reactants are consumed, what volume of nitrogen monoxide is produced at the same temperature and pressure?

Answer

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

 $4 \text{ vol.} : 5 \text{ vol.} \rightarrow 4 \text{ vol.}$

[By Gay Lussac's law]

9 litres of reactants produces = 4 litres of NO

So, 27 litres of reactants will produces

$$=\frac{4}{9}\times 27=12$$
 litres

Hence, volume of nitrogen monoxide produced = 12 litres

Question 12

A mixture of hydrogen and chlorine occupying 36 cm³ was exploded. On shaking it with water, 4 cm³ of hydrogen was left behind. Find the composition of the mixture.

Answer

According to Gay lussac's law,

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

$$\begin{array}{cccc} \mathrm{H_2} & + & \mathrm{Cl_2} & \longrightarrow & \mathrm{2HCl} \\ \mathrm{1 \ vol.} & : & \mathrm{1 \ vol.} & \longrightarrow & \mathrm{2 \ vol.} \end{array}$$

As, 4 cm^3 of hydrogen was left behind, hence, $36 - 4 = 32 \text{ cm}^3$ of mixture of hydrogen and chlorine exploded.

As, 1 Vol. of hydrogen requires 1 Vol. of oxygen

- ∴ 16 cm³ hydrogen requires 16 cm³ of oxygen
- : Mixture is 20 cm³ (i.e., 16 + 4) of hydrogen and 16 cm³ of chlorine.

Question 13

What volume of air (containing 20% O₂ by volume) will be required to burn completely 10 cm³ each of methane and acetylene?

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

 $2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O$

Answer

[By Gay Lussac's law]

- 1 Vol. CH₄ requires 2 Vol. of O₂
- ∴ 10 cm³ CH₄ will require 2 x 10
- $= 20 \text{ cm}^3 \text{ of } O_2$

Given, air contains 20% O2 by volume.

Let x volume of air contain 20 cm³ of O_2

$$\Rightarrow \frac{20}{100} \times x = 20 \Rightarrow x = \frac{100}{20} \times 20 \Rightarrow x = 100 \text{ cm}^3$$

 \therefore 20 cm³ O₂ is present in **100 cm³ of air.**

Similarly, 2 Vol C₂H₂ requires 5 Vol. of oxygen

- ∴ 10 cm³ C₂H₂ will require $\frac{5}{2}$ x 10
- $= 25 \text{ cm}^3 \text{ of oxygen}$

Given, air contains 20% O₂ by volume

Let x volume of air contain 25 cm³ of O₂

$$\Rightarrow \frac{20}{100} \times x = 25 \Rightarrow x = \frac{100}{20} \times 25 \Rightarrow x = 125 \text{ cm}^3$$

 \therefore 25 cm³ O₂ is present in 125 cm³ of air.

Hence, total volume of air required is $100 + 125 = 225 \text{ cm}^3$

Question 14

LPG has 60% propane and 40% butane: 10 litres of this mixture is burnt. Calculate the volume of carbon dioxide added to the atmosphere.

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

Answer

Given, 10 litres of this mixture contains 60% propane and 40% butane. Hence, propane is 6 litres and butane is 4 litres

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

1 vol. : 5 vol. \rightarrow 3 vol.
 $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$
2 vol. : 13 vol. \rightarrow 8 vol.

1 Vol. C_3H_8 produces carbon dioxide = 3 Vol

So, 6 litres C_3H_8 will produce carbon dioxide = 3 x 6 = 18 litres

2 Vol. C_4H_{10} produces carbon dioxide = 8 Vol

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686

So, 4 litres C_4H_{10} will produce carbon dioxide = $\frac{8}{2}$ x 4 = 16 litres

Hence, 34 (i.e., 18 + 16) litres of CO₂ is produced.

Question 15

Water decomposes to O₂ and H₂ under suitable conditions as represented by the equation below:

 $2H_2O \rightarrow 2H_2 + O_2$

- (a) If 2500 cm³ of H₂ is produced, what volume of O₂ is liberated at the same time and under the same conditions of temperature and pressure?
- (b) The 2500 cm³ of H₂ is subjected to $2\frac{1}{2}$ times increase in pressure (temp. remaining constant). What volume will H₂ now occupy?
- (c) Taking the value of H₂ calculated in 5(b), what changes must be made in Kelvin (absolute) temperature to return the volume to 2500 cm³ pressure remaining constant.

Answer

$$2H_2O \rightarrow 2H_2 + O$$

2 Vol. 2 Vol. 1 Vol.

2 Vol. of water gives 2 Vol. of H₂ and 1 Vol. of O₂

∴ If 2500 cm³ of H₂ is produced, volume of O₂ produced =
$$\frac{2500}{2}$$
 = 1250 cm³

(b)
$$V_1 = 2500 \text{ cm}^3$$

$$P_1 = 1 \text{ atm} = 760 \text{ mm}$$

$$T_1 = T$$

$$T_2 = T$$

$$P_2 = [760 \text{ x } 2\frac{1}{2}] + [760] = 760 \left[\frac{5}{2} + 1\right] = 760 \text{ x } \frac{7}{2} = 2660 \text{ mm}$$

$$V_2 = ?$$

Using formula:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{760 \times 2500}{T} = 2660 \times \frac{V_2}{T}$$

$$V_2 = \frac{760 \times 2500}{2660} = \frac{5000}{7}$$
(c) $V_1 = \frac{5000}{7} = 714.29 \text{ cm}^3$

$$P_1 = P_2 = P$$

$$\mathbf{r}_1 - \mathbf{r}_2$$

$$T_1 = T$$

$$V_2 = 2500 \text{ cm}^3$$

$$T_2 = ?$$

Using formula:

Using formula:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{P \times 714.29}{T} = \frac{P \times 2500}{T_2}$$

$$T_2 = \frac{2500}{714.29} \times T$$

$$T_2 = 3.5 \times T$$

Hence, $T_2 = 3.5$ times T or temperature should be increased by 3.5 times

Question 16

The gases chlorine, nitrogen, ammonia and sulphur dioxide are collected under the same conditions of temperature and pressure. The following table gives the volumes of gases collected and the number of molecules (x) in 20 litres of nitrogen. You are to complete the table giving the number of molecules in the other gases in terms of x.

Contact: 8630608162 App: SaarthEd Web: www.saarthed.com

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Gas	Volume (in litres)	Number of molecules
Chlorine	10	
Nitrogen	20	x
Ammonia	20	
Sulphur dioxide	5	

Answer

Gas	Volume (in litres)	Number of molecules
Chlorine	10	x/2
Nitrogen	20	X
Ammonia	20	X
Sulphur dioxide	5	x/4

Reason — According to Avogadro's law, equal volumes of all gases under similar conditions of temperature and pressure contain same number of molecules. If 20 lit of nitrogen contains x molecules then 20 lit of ammonia will also contain x molecules. As volume of chlorine is half that of nitrogen so it will contain half the number of molecules of nitrogen i.e., x/2. Similarly, sulphur dioxide will contain x/4 molecules.

Question 17

- (i) If 150 cc of gas A contains X molecules, how many molecules of gas B will be present in 75 cc of B? The gases A and B are under the same conditions of temperature and pressure.
- (ii) Name the law on which the above problem is based

Answer

(a) Given, 150 cc of gas A contains X molecules. According to Avogadro's law, 150 cc of gas B will also contain X molecules.

So, 75 cc of gas B will contain $\frac{x}{2}$ molecules.

(b) The problem is based on Avogadro's law.

Exercise 5B

Question 1

Calculate the relative molecular masses of:

- (a) Ammonium chloroplatinate [(NH₄)₂PtCl₆]
- (b) Potassium chlorate [KClO₃]
- (c) CuSO₄.5H₂O
- (d) $(NH_4)_2SO_4$
- (e) CH₃COONa
- (f) CHCl₃
- (g) $(NH_4)_2Cr_2O_7$

Answer

- (a) $(NH_4)_2PtCl_6$
- = (2N) + (8H) + (Pt) + (6Cl)
- $= (2 \times 14) + (8 \times 1) + 195 + (6 \times 35.5)$
- =28+8+195+213
- = 444 a.m.u.

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

(b) KClO₃

$$= (K) + (C1) + (30)$$

$$= 39 + 35.5 + (3 \times 16)$$

$$= 39 + 35.5 + 48$$

= 122.5 a.m.u.

$$= (Cu) + (S) + (4O) + 5(2H + O)$$

$$= 63.5 + 32 + (4 \times 16) + 5[(2 \times 1) + 16]$$

$$= 63.5 + 32 + 64 + (5 \times 18)$$

$$=63.5+32+64+90$$

= 249.5 a.m.u.

$$(d) (NH_4)_2SO_4$$

$$= (2N) + (8H) + (S) + (4O)$$

$$= (2 \times 14) + (8 \times 1) + 32 + (4 \times 16)$$

$$=28+8+32+64$$

= 132 a.m.u.

(e) CH₃COONa

$$= (C) + (3H) + (C) + (2O) + (Na)$$

$$= 12 + (3 \times 1) + 12 + (2 \times 16) + 23$$

$$= 12 + 3 + 12 + 32 + 23$$

= 82 a.m.u.

(f) CHCl₃

$$= (C) + (H) + (3C1)$$

$$= 12 + 1 + (3 \times 35.5)$$

$$= 12 + 1 + 106.5$$

= 119.5 a.m.u.

(g)
$$(NH_4)_2Cr_2O_7$$

$$= (2N) + (8H) + (2Cr) + (7O)$$

$$= (2 \times 14) + (8 \times 1) + (2 \times 51.9) + (7 \times 16)$$

$$=28+8+103.8+112$$

=
$$251.8 \approx 252$$
 a.m.u.

Question 2

Find the:

- (a) number of molecules in 73 g of HCl,
- (b) weight of 0.5 mole of O_2 ,
- (c) number of molecules in 1.8 g of H₂O,
- (d) number of moles in 10 g of CaCO₃,
- (e) weight of 0.2 mole of H₂ gas,
- (f) number of molecules in 3.2 g of SO₂.

Answer

(a) Number of molecules in 73 g of HCl —

Molecular wt. of any substance contain 6.022×10^{23} molecules.

Mass of 1 mole of HCl is 1 + 35.5 = 36.5 g

36.5 g of HCl contains 6.022×10^{23} molecules

$$\therefore 73 \text{ g of HCl contains } \frac{6.022 \times 10^{23} \times 73}{36.5}$$

$= 1.2 \times 10^{24}$ molecules

(b) Weight of 0.5 mole of O₂ —

1 mole of O_2 weighs = $2O = 2 \times 16 = 32 \text{ g}$

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

- \therefore 0.5 moles will weigh = $\frac{32}{2}$ = 16 g
- (c) Number of molecules in 1.8 g of H₂O —

Molecular wt. of any substance contains 6.022×10^{23} molecules.

Mass of 1 mole of H_2O is $(2 \times 1) + 16 = 2 + 16 = 18 \text{ g}$

18 g of H_2O contains 6.022×10^{23} molecules

- ∴ 1.8 g of H₂O contains $\frac{6.022 \times 10^{23} \times 1.8}{18}$
- $= 6.02 \times 10^{22}$ molecules
- (d) Number of moles in 10 g of CaCO₃ —

Mass of 1 mole of $CaCO_3 = 40 + 12 + 3(16) = 52 + 48 = 100 g$

 $100 \text{ g of } CaCO_3 = 1 \text{ mole}$

- $10 \text{ g of CaCO}_3 = \frac{1 \times 10}{100}$
- = **0.1** mole
- (e) Weight of 0.2 mole H₂ gas —

1 mole of H_2 weighs = 2 g

- \therefore 0.2 moles will weigh = $\frac{2 \times 0.2}{1}$ = **0.4** g
- (f) No. of molecules in 3.2 g of SO₂ —

Molecular wt. of any substance contain 6×10^{23} molecules.

Mass of 1 mole of SO_2 is 32 + 2(16) = 32 + 32 = 64 g

64 g of SO_2 contains 6×10^{23} molecules

$$\therefore$$
 3.2 g of SO₂ contains $\frac{6 \times 10^{23} \times 3.2}{64}$

 $= 3 \times 10^{22}$ molecules.

Question 3

Which of the following would weigh most?

- (a) 1 mole of H₂O
- (b) 1 mole of CO₂
- (c) 1 mole of NH₃
- (d) 1 mole of CO

Answer

1 mole of CO₂

Reason —

Weight of
$$H_2O = 2 + 16 = 18 \text{ g}$$

Weight of
$$CO_2 = 12 + (2 \times 16) = 12 + 32 = 44 \text{ g}$$

Weight of
$$NH_3 = 14 + (3 \times 1) = 14 + 3 = 17 \text{ g}$$

Weight of CO = 12 + 16 = 28 g

As weight of CO₂ is maximum, hence 1 mole of CO₂ will weigh the most.

Question 4

Which of the following contains the maximum number of molecules?

- (a) $4 g \text{ of } O_2$
- (b) 4 g of NH_3
- (c) 4 g of CO_2
- (d) 4 g of SO_2

Answer

4 g of NH₃

Reason —

(a) No. of molecules in 4 g of O₂

Molecular wt. of any substance contain 6.022×10^{23} molecules.

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

Mass of 1 mole of O_2 is 2(16) = 32 g

32 g of O_2 contains 6.022×10^{23} molecules

$$\therefore$$
 4 g of O₂ contains $\frac{6.022 \times 10^{23} \times 4}{32}$

 $= 7.5 \times 10^{22}$ molecules.

Similarly,

(b) 4 g of NH₃ [14 + 3 = 17g] contains
$$\frac{6.022 \times 10^{23} \times 4}{17}$$

(c) 4 g of CO [12 + 16 = 28g] contains
$$\frac{6.022 \times 10^{23} \times 4}{28}$$

(d) 4 g of SO₂ [32 + 32 = 64g] contains
$$\frac{6.022 \times 10^{23} \times 4}{64}$$

∴ 4g of NH₃ having minimum molecular mass contains maximum molecules.

Note: The fraction with lowest denominator gives the highest value. Hence, by observation we can say that 4 g of NH_3 has maximum number of molecules.

Question 5(a)

Calculate the number of particles in 0.1 mole of any substance.

Answer

No. of particles in 1 mole = 6.022×10^{23}

∴ No. of particles in 0.1 mole =
$$\frac{6.022 \times 10^{23} \times 0.1}{1}$$

$$=6.022\times10^{22}$$

Question 5(b)

Calculate the number of hydrogen atoms in 0.1 mole of H₂SO₄.

Answer

1 mole of H_2SO_4 contains $(2 \times 6.022 \times 10^{23})$ hydrogen atoms

$$\therefore 0.1 \text{ mole of } H_2SO_4 \text{ contains} = \frac{6.022 \times 10^{23} \times 2 \times 0.1}{1}$$

=
$$1.2 \times 10^{23}$$
 atoms of hydrogen

Question 5(c)

Calculate the number of molecules in one kg of calcium chloride.

Answei

Mass of 1 mole of
$$CaCl_2 = Ca + 2Cl = 40 + (2 \times 35.5) = 40 + 71 = 111 \text{ g}$$

111 g of CaCl₂ contains 6.022×10^{23} molecules

∴ 1000 g of CaCl₂ contains
$$\frac{6.022 \times 10^{23} \times 1000}{111}$$

$$= 5.42 \times 10^{24}$$
 molecules

Question 6(a)

How many grams of Al are present in 0.2 mole of it?

Answer

1 mole of aluminium has mass = 27 g

0.2 mole of aluminium has mass

$$=\frac{27}{1} \times 0.2$$

$$= 5.4 g$$

Question 6(b)

How many grams of HCl are present in 0.1 mole of it?

Answer

1 mole of HCl has mass = 1 + 35.5 = 36.5 g

0.1 mole of HCl has mass

$$=\frac{36.5}{1} \times 0.1$$

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

= 3.65 g

Question 6(c)

How many grams of H₂O are present in 0.2 mole of it?

Answer

1 mole of H_2O has mass = 2(1) + 16 = 2 + 16 = 18 g

0.2 mole of H₂O has mass

$$=\frac{18}{1} \times 0.2$$

$$= 3.6 g$$

Question 6(d)

How many grams of CO₂ is present in 0.1 mole of it?

Answer

1 mole of CO_2 has mass = 12 + 2(16) = 12 + 32 = 44 g

0.1 mole of CO₂ has mass

$$=\frac{44}{1} \times 0.1$$

$$= 4.4 g$$

Question 7(a)

The mass of 5.6 litres of a certain gas at S.T.P. is 12 g. What is the relative molecular mass or molar mass of the gas?

Answer

5.6 litres of gas at S.T.P. has mass = 12 g

∴ 22.4 litre (molar volume) has mass

$$=\frac{12}{5.6}$$
 x 22.4

=48 g

Question 7(b)

Calculate the volume occupied at S.T.P. by 2 moles of SO₂.

Answei

1 mole of SO_2 has volume = 22.4 litres

 \therefore 2 moles will have = 22.4 × 2 = 44.8 litre

Question 8(a)

Calculate the number of moles of CO₂ which contain 8.00 g of O₂

Answer

Oxygen in 1 mole of $CO_2 = 2O = (2 \times 16) = 32 \text{ g}$

or we can say, 32 g of oxygen is present in 1 mole of CO₂

∴ 8 gm of
$$O_2$$
 is present in $\frac{1}{32}$ x 8

= 0.25 moles

Question 8(b)

Calculate the number of moles of methane in 0.80 g of methane.

Answei

Molar mass of methane $(CH_4) = C + 4H = 12 + 4 = 16 g$

16 g of methane = 1 mole

$$\therefore 0.80 \text{ g of methane} = \frac{1}{16} \times 0.80$$

= 0.05 moles

Question 9

Calculate the weight/mass of:

- (a) an atom of oxygen
- (b) an atom of hydrogen
- (c) a molecule of NH₃

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

- (d) 10²² atoms of carbon
- (e) the molecule of oxygen
- (f) 0.25 gram atom of calcium

Answer

- (a) Number of oxygen atoms in 16 g of atomic oxygen = 6.022×10^{23} atoms
- ∴ mass of 1 atom of oxygen

$$=\frac{16}{6.022\times10^{23}}$$

- $= 2.657 \times 10^{-23} g$
- (b) Number of hydrogen atoms in 1 g of atomic hydrogen = 6.022×10^{23} atoms
- ∴ Mass of 1 atom of hydrogen

$$=\frac{1}{6.022\times10^{23}}$$

- $= 1.666 \times 10^{-24} g$
- (c) Gram molecular mass of $NH_3 = 14 + 3 = 17 g$

Number of NH₃ molecules in 17 g of NH₃ = 6.022×10^{23} molecules

Mass of 6.022×10^{23} molecules of NH₃ = 17g

∴ Mass of 1 molecule of NH₃ =
$$\frac{17}{6.022 \times 10^{23}}$$

- $= 2.823 \times 10^{-23} \text{ g}$
- (d) Mass of 6.022×10^{23} atoms of atomic carbon = 12 g
- : Mass of 10^{22} atoms of carbon = $\frac{12}{6.022 \times 10^{23}} \times 10^{22}$
- = 0.2 g
- (e) Gram molecular mass of oxygen $(O_2) = 2 \times 16 = 32 \text{ g}$

Mass of 6.022×10^{23} molecules of $O_2 = 32$ g

∴ Mass of 1 molecule of
$$O_2 = \frac{32}{6.022 \times 10^{23}}$$

- $= 5.314 \times 10^{-23} \text{ g}$
- (f) Atomic weight of calcium = 40 g

Gram atom = $\frac{\text{Mass of element}}{\text{Atomic mass}}$

Therefore, $0.25 = \frac{\text{Mass of calcium}}{40}$

Mass of calcium = $40 \times 0.25 = 10 \text{ g}$

Question 10

Calculate the mass of 0.1 mole of each of the following

- (a) CaCO₃
- (b) Na₂SO₄.10H₂O
- (c) CaCl₂
- (d) Mg

$$(Ca = 40, Na = 23, Mg = 24, S = 32, C = 12, Cl = 35.5, O = 16, H = 1)$$

Answer

- (a) Mass of 1 mole of CaCO₃
- $= Ca + C + 3O = 40 + 12 + (3 \times 16) = 52 + 48 = 100 \text{ g}$
- : Mass of 0.1 mole of $CaCO_3 = 0.1 \times 100 = 10 \text{ g}$
- (b) Mass of 1 mole of Na₂SO₄.10H₂O
- $= 2Na + S + 4O + 10(2H + O) = (2 \times 23) + 32 + (4 \times 16) + 10(2 + 16) = 46 + 32 + 64 + 180 = 322 g$
- : Mass of 0.1 mole of Na₂SO₄.10H₂O = 0.1 x 322 = **32.2 g**
- (c) Mass of 1 mole of CaCl₂
- $= Ca + 2Cl = 40 + (2 \times 35.5) = 40 + 71 = 111 g$
- : Mass of 0.1 mole of $CaCl_2 = 0.1 \times 111 = 11.1 \text{ g}$

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

- (d) Mass of 1 mole of Mg = 24 g
- : Mass of 0.1 mole of Mg = 24 x 0.1 = **2.4 g**

Question 11(a)

Calculate the number of oxygen atoms in 0.10 mole of Na₂CO₃.10H₂O.

Answer

- 1 molecule of Na₂CO₃.10H₂O contains 13 atoms of oxygen
- \therefore 6.022 \times 10²³ molecules (ie., 1 mole) has 13 \times 6.022 \times 10²³ atoms
- \therefore 0.1 mole will have atoms = $0.1 \times 13 \times 6.022 \times 10^{23}$
- $= 7.8 \times 10^{23} \text{ atoms}$

Question 11(b)

Calculate the number of gram atoms in 4.6 gram of sodium.

Answer

Atomic mass of Na = 23

23 g of sodium = 1 gram atom of sodium

∴ 4.6 gram of sodium =
$$\frac{4.6}{23}$$

= 0.2 gram atom of sodium

Question 11(c)

Calculate the number of moles in 12 g of oxygen gas.

Answer

$$32 g of oxygen = 1 mole$$

∴ 12 g of oxygen =
$$\frac{12}{32} = \frac{3}{8}$$

= 0.375 mole

Question 12

What mass of Ca will contain the same number of atoms as are present in 3.2 g of S?

Answei

1 mole of Sulphur weighs 32 g and contains 6.02 x 10²³ atoms

∴ 3.2 g of Sulphur will contain =
$$\frac{6.02 \times 10^{23}}{32} \times 3.2$$

$$= 6.02 \times 10^{22} \text{ atoms.}$$

$$6.02 \times 10^{23}$$
 atoms of Ca weighs = 40 g

∴ 6.02 x
$$10^{22}$$
 atoms of Ca will weigh = $\frac{40}{6.02 \times 10^{23}}$ x 6.02 x 10^{22} = 4 g.

Question 13

Calculate the number of atoms in each of the following:

- (a) 52 moles of He
- (b) 52 amu of He
- (c) 52 g of He

Answer

- (a) No. of atoms = Moles x 6.022×10^{23}
- $= 52 \times 6.022 \times 10^{23} = 3.131 \times 10^{25} \text{ atoms}$
- (b) 4 amu = 1 atom of He
- \therefore 52 amu = $\frac{52}{4}$ = 13 atoms of He
- (c) Mass of 1 mole of He is 4 g
- 4 g of He contains 6.022×10^{23} atoms
- ∴ 52 g of He contains $\frac{6.022 \times 10^{23}}{4} \times 52$
- $= 7.828 \times 10^{24}$ atoms

Question 14

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Calculate the number of atoms of each kind in 5.3 grams of sodium carbonate.

Answer

Molecular mass of $Na_2CO_3 = 2Na + C + 3O = (2 \times 23) + 12 + (3 \times 16) = 46 + 12 + 48 = 106 \text{ g}$

(i) $106 \text{ g of Na}_2\text{CO}_3 \text{ has} = 2 \times 6.022 \times 10^{23} \text{ atoms of Na}$

∴ 5.3 g of Na₂CO₃ will have =
$$\frac{2 \times 6.022 \times 10^{23} \times 5.3}{106}$$
 = 6.022 × 10²² atoms of Na

(ii) $106 \text{ g of Na}_2\text{CO}_3 \text{ has} = 6.022 \times 10^{23} \text{ atoms of carbon}$

∴ 5.3 g of Na₂CO₃ will have =
$$\frac{6.022 \times 10^{23} \times 5.3}{106}$$
 = 3.01 × 10²² atoms of carbon

(iii) 106 g of Na₂CO₃ has $3 \times 6.022 \times 10^{23}$ atoms of oxygen

∴ 5.3 g of Na₂CO₃ will have =
$$\frac{3 \times 6.022 \times 10^{23} \times 5.3}{106}$$
 = 9.03 × 10²² atoms of oxygen

Question 15(a)

Calculate the mass of nitrogen supplied to soil by 5 kg of urea [CO(NH₂)₂]

$$[O = 16; N = 14; C = 12; H = 1]$$

Answer

Molar mass of urea $[CO(NH_2)_2] = 12 + 16 + 2(14 + (2 \times 1))$

$$=28+2(16)$$

$$= 28 + 32$$

$$= 60 g$$

Molar mass of nitrogen = $2 \times 14 = 28 \text{ g}$

60 g urea has mass of nitrogen = 28 g

∴ 5000 g urea will have mass

$$=\frac{28\times5000}{}$$

$$= 2333 g = 2.33 kg$$

Question 15(b)

Calculate the volume occupied by 320 g of sulphur dioxide at S.T.P.

$$[S = 32; O = 16]$$

Answer

Molar mass of sulphur dioxide $(SO_2) = S + 2O = 32 + (2 \times 16) = 32 + 32 = 64 \text{ g}$

64 g of sulphur dioxide has volume = 22.4 litre

∴ 320 g of sulphur dioxide will have volume =
$$\frac{22.4 \times 320}{64}$$

= 112 litres

Question 16

- (a) What do you understand by the statement that 'vapour density of carbon dioxide is 22'?
- (b) Atomic mass of Chlorine is 35.5. What is it's vapour density?

Answer

(a) Vapour density of carbon dioxide is 22 implies that 1 molecule of carbon dioxide is 22 times heavier than 1 molecule of hydrogen.

(b) Vapour density =
$$\frac{\text{Molecular mass}}{2}$$

Molecular mass of chlorine $Cl_2 = 2Cl = 2 \times 35.5 = 71 \text{ g}$

Substituting in formula;

Vapour density =
$$\frac{71}{2}$$
 = 35.5

Hence, vapour density of Chlorine atom is 35.5

Question 17

What is the mass of 56 cm³ of carbon monoxide at S.T.P.?

$$(C = 12, O = 16)$$

Answer

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

 $22400 \text{ cm}^3 \text{ of CO has mass} = 12 + 16 = 28 \text{ g}$

∴ 56 cm³ will have mass =
$$\frac{28}{22400}$$
 x 56 = **0.07** g

Question 18

Determine the number of molecules in a drop of water which weighs 0.09 g.

Answer

Molecular wt. of any substance contain 6.022×10^{23} molecules.

Mass of 1 mole of water is 2H + O = 2 + 16 = 18 g

18 g of H_2O contains 6.022×10^{23} molecules

∴ 0.09 g of H₂O contains
$$\frac{6.022 \times 10^{23} \times 0.09}{18}$$

$$= 3.01 \times 10^{21}$$
 molecules

Question 19

The molecular formula for elemental sulphur is S₈. In a sample of 5.12 g of sulphur:

- (a) How many moles of sulphur are present?
- (b) How many molecules and atoms are present?

Answer

- (a) Mass of 1 mole of $S_8 = 8S = 8 \times 32 = 256 \text{ g}$
- ∴ Moles in 5.12 g of sulphur = $\frac{5.12}{256}$ = **0.02 moles**
- (b) 1 mole = 6.022×10^{23} molecules
- $\therefore 0.02 \text{ moles will have} = 0.02 \times 6.022 \times 10^{23}$
- = $1.2044 \times 10^{22} \approx 1.2 \times 10^{22}$ molecules

No. of atoms in 1 molecule of $S_8 = 8$

- \therefore No. of atoms in 1.2044 \times 10²² molecules = 1.2044 x 10²² \times 8
- $= 9.635 \times 10^{22}$ molecules

Question 20

If phosphorus is considered to contain P₄ molecules, then calculate the number of moles in 100 g of phosphorus?

Answer

Mass of 1 mole of $P_4 = 4P = 4 \times 31 = 124 \text{ g}$

124 g of phosphorus $(P_4) = 1$ mole

:. 100 g of phosphorus $(P_4) = \frac{1}{124} \times 100 = 0.806$ moles

Question 21

Calculate:

- (a) The gram molecular mass of chlorine if 308 cm³ of it at S.T.P. weighs 0.979 g
- (b) The volume of 4 g of H₂ at 4 atmospheres.
- (c) The mass of oxygen in 2.2 litres of CO₂ at S.T.P.

Answer

(a) The mass of 22.4 L of a gas at S.T.P. is equal to it's gram molecular mass.

308 cm³ of chlorine weighs 0.979 g

∴ 22,400 cm³ of chlorine will weigh

$$= \frac{0.979}{308} \times 22400 = 71.2 \text{ g}$$

(b) Molar mass of $H_2 = 2H = 2 \times 1 = 2 g$

 $2g H_2$ at 1 atm has volume = 22.4 dm^3

 \therefore 4 g H₂ at 1 atm will have volume 2 x 22.4 = 44.8 dm³

Now, For 4 g H₂

 $P_1 = 1$ atm, $V_1 = 44.8$ dm³

 $P_2 = 4$ atm, $V_2 = ?$

Using formula $P_1V_1 = P_2V_2$

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

$$V_2 = \frac{P_1 V_1}{P_2} V_2 = \frac{1 \times 44.8}{4} = 11.2 d$$
 m³

(c) Molar mass of oxygen in carbon dioxide = $2O = 2 \times 16 = 32 \text{ g}$

Mass of oxygen in 22.4 litres of $CO_2 = 32 g$

∴ Mass of oxygen in 2.2 litres of CO₂

$$=\frac{32}{22.4}$$
 x 2.2 = **3.14** g

Question 22

A student puts his signature with graphite pencil. If the mass of carbon in the signature is 10^{-12} g, calculate the number of carbon atoms in the signature.

Answer

No. of atoms in 12 g C = 6.022×10^{23}

 \therefore no. of carbon atoms in 10^{-12} g

$$\frac{6.022\times10^{23}}{12}$$
 x 10^{-12}

$$= 5.019 \times 10^{10} \text{ atoms}$$

Question 23

An unknown gas shows a density of 3 g per litre at 273°C and 1140 mm Hg pressure. What is the gram molecular mass of this gas?

Answer

Given:

P = 1140 mm Hg

Density = D = 3 g per L

 $T = 273 \text{ }^{\circ}\text{C} = 273 + 273 = 546 \text{ K}$

gram molecular mass = ?

At S.T.P., the volume of one mole of any gas is 22.4 L

Volume of unknown gas at S.T.P. =?

By Charle's law.

$$V_1 = 1 L$$

$$T_1 = 546 \text{ K}$$

$$T_2 = 273 \text{ K}$$

$$V_2 = ?$$

$$\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}$$

Hence,
$$V_2 = \frac{1}{546} \times 273 = 0.5 \text{ L}$$

Volume at standard pressure = ?

Apply Boyle's law.

 $P_1 = 1140 \text{ mm Hg}$

 $V_1 = 0.5 L$

 $P_2 = 760 \text{ mm Hg}$

$$V_2 = ?$$

$$\mathbf{P}_1 \times \mathbf{V}_1 = \mathbf{P}_2 \times \mathbf{V}_2$$

$$V_2 = \frac{1140 \times 0.5}{760} = 0.75 \text{ L}$$

Now,

22.4 L = 1 mole of any gas at S.T.P.,

then
$$0.75 L = \frac{0.75}{22.4}$$

= 0.0335 moles

The original mass is 3 g

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

 $Molecular\ mass = \frac{\textit{Mass of compound}}{\textit{Moles of compound}}$

$$=\frac{3}{0.0335}$$
 = 89.55 \approx 89.6 g per mole

Hence, the gram molecular mass of the unknown gas is 89.6g

Question 24

Cost of Sugar (C₁₂H₂₂O₁₁) is ₹40 per kg; calculate it's cost per mole.

Answer

Molar mass of $C_{12}H_{22}O_{11} = 12C + 22H + 11O = (12 x 12) + (22 x 1) + (11 x 16) = 144 + 22 + 176 = 342 g$ 1000 g of sugar costs = ₹40

∴ 342 g of sugar will cost = $\frac{40}{1000}$ x 342 = ₹13.68 per mole

Question 25

Calculate the number of molecules in one kg of NaOH.

Answer

Mass of 1 mole of NaOH = Na + O + H = 23 + 16 + 1 = 40 g

40 g of NaOH contains 6.022×10^{23} molecules

∴ 1000 g of NaOH contains = $\frac{6.022 \times 10^{23} \times 1000}{40}$

 $= 1.5 \times 10^{25}$ molecules

Question 26

Calculate the number of atoms present in:

(a) 10 g of Chlorine

(b) 10 g of Nitrogen

Answer

(a) Mass of 1 mole of chlorine (Cl) is 35.5 g

35.5 g of chlorine (Cl) contains 6.022×10^{23} atoms

∴ 10g of chlorine (Cl) contains =
$$\frac{6.022 \times 10^{23} \times 10}{35.5}$$

 $= 1.7 \times 10^{23} \text{ atoms}$

(b) Mass of 1 mole of nitrogen (N) is 14 g

14 g of nitrogen (N) contains 6.022×10^{23} atoms

∴ 10g of nitrogen (N) contains = $\frac{6.022 \times 10^{23} \times 10}{14}$

 $= 4.3 \times 10^{23} \text{ atoms}$

Question 27

Correct the following:

- (a) Equal volumes of any gas, under similar conditions, contain an equal number of atoms.
- (b) 22 g of CO₂, occupies 22.4 litres at STP.
- (c) The unit of atomic weight is grams.

Answer

- (a) Equal volumes of any gas, under similar conditions, contain an equal number of *molecules*.
- (b) 44 g of CO₂, occupies 22.4 litres at STP.
- (c) The unit of atomic weight is atomic mass unit (a.m.u).

Exercise 5C

Question 1

Give the empirical formula of:

- (a) C_6H_6
- (b) $C_6H_{18}O_3$
- (c) C_2H_2
- (d) CH₃COOH

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

Answer

- (a) Molecular formula is C₆H₆
- ∴ Ratio of C and H is 6:6

Simple ratio is 1:1

Hence, empirical formula = CH

- (b) Molecular formula is C₆H₁₈O₃
- ∴ Ratio of C, H and O is 6:18:3

Simple ratio is 2:6:1

Hence, empirical formula = C_2H_6O

- (c) Molecular formula is C₂H₂
- ∴ Ratio of C and H is 2 : 2

Simple ratio is 1:1

Hence, empirical formula = CH

- (d) Molecular formula is CH₃COOH i.e. C₂H₄O₂
- \therefore Ratio of C, H and O is 2:4:2

Simple ratio is 1:2:1

Hence, empirical formula = CH_2O

Question 2

Find the percentage of water of crystallisation in $CuSO_4.5H_2O$. (At. Mass Cu = 64, H = 1, O = 16, S = 32)

Answer

Relative molecular mass of CuSO₄.5H₂O

$$= 64 + 32 + (4 \times 16) + [5(2+16)]$$

$$= 96 + 64 + 90 = 250$$

250 g of CuSO₄.5H₂O contains 90 g of water of crystallisation

∴ 100 g of CuSO₄.5H₂O contains

$$=\frac{90}{250} \times 100 = 36\%$$

Question 3

Calculate the percentage of phosphorus in

- (a) Calcium hydrogen phosphate Ca(H₂PO₄)₂
- (b) Calcium phosphate Ca₃(PO₄)₂

Answer

- (a) Molecular mass of Ca(H₂PO₄)₂
- = Ca + 2[2H + P + 4O]
- =40+2[2(1)+31+4(16)]
- =40+2[2+31+64]
- =40 + 194
- = 234

234 g of Ca(H₂PO₄)₂ contains 62 g of P

- ∴ 100 g of Ca(H₂PO₄)₂ contains
- $=\frac{62}{234} \times 100 = 26.5\%$
- (b) Molecular mass of Ca₃(PO₄)₂
- = 3Ca + 2[P + 4O]
- $= (3 \times 40) + 2[31 + 4(16)]$
- = 120 + 2[31 + 64]
- = 120 + 190
- = 310

310 g of Ca₃(PO₄)₂ contains 62 g of P

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

∴ 100 g of Ca₃(PO₄)₂ contains

$$=\frac{62}{310} \times 100 = 20 \%$$

Question 4

Calculate the percent composition of Potassium chlorate KClO₃.

Answer

Molecular mass of KClO₃

= K + C1 + 3O

 $= 39 + 35.5 + (3 \times 16)$

=39+35.5+48

= 122.5 g

% of K = ?

Since, 122.5 g of KClO₃ contains 39 g of K

∴ 100 g of KClO₃ contains

 $= \frac{39}{122.5} \times 100$

= 31.83%

Similarly, 122.5 g of KClO₃ contains 35.5 g of Cl

∴ 100 g of KClO₃ contains

$$=\frac{35.5}{122.5} \times 100$$

= 28.98%

And, 122.5 g of KClO₃ contains 48 g of O

∴ 100 g of KClO₃ contains

$$= \frac{48}{122.5} \times 100$$

= 39.18%

Question 5

Find the empirical formula of the compounds with the following percentage composition:

$$Pb = 62.5\%$$
, $N = 8.5\%$, $O = 29.0\%$

Answer

Element	% composition	At. mass	Relative no. of atoms	Simplest ratio
Pb	62.5	207	$\frac{62.5}{207} = 0.301$	$\frac{0.301}{0.301} = 1$
N	8.5	14	$\frac{8.5}{14} = 0.607$	$\frac{0.607}{0.301} = 2$
О	29	16	$\frac{29}{16} = 1.81$	$\frac{1.81}{0.301} = 6$

Hence, Simplest ratio of whole numbers = Pb : N : O = 1 : 2 : 6

Hence, empirical formula is Pb(NO₃)₂.

Question 6

Calculate the mass of iron in 10 kg of iron ore which contains 80% of pure ferric oxide.

Answer

Atomic wt. of Fe = 56 and O = 16

Molecular mass of $Fe_2O_3 = 2Fe + 3O$

 $=(2 \times 56) + (3 \times 16)$

= 112 + 48

= 160 g

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

Iron present in 80% of $Fe_2O_3 = \frac{112}{160} \times 80$

= 56 g

 \therefore Mass of iron in 100 g of iron ore = 56 g

Hence, mass of iron present in 10 kg (i.e., 10,000 g) of iron ore $=\frac{56}{100}$ x 10000

= 5600 g = 5.6 kg

Question 7

If the empirical formula of two compounds is CH and their Vapour densities are 13 to 39 respectively, find their molecular formula.

Answer

Empirical formula is CH

Empirical formula weight = 12 + 1 = 13

Vapour density (V.D.) = 13

Molecular weight = $2 \times V.D. = 2 \times 13$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{2 \times 13}{13} = 2$$

∴ Molecular formula = $n[E.F.] = 2[CH] = C_2H_2$

Similarly,

Empirical formula is CH

Empirical formula weight = 12 + 1 = 13

Vapour density (V.D.) = 39

Molecular weight = $2 \times V.D. = 2 \times 39$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{2 \times 39}{13} = 6$$

: Molecular formula = $n[E.F.] = 6[CH] = C_6H_6$

Ouestion 8

Find the empirical formula of a compound containing 17.64% hydrogen and 82.35% nitrogen.

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Nitrogen	82.35	14	$\frac{82.35}{14} = 5.88$	$\frac{5.88}{5.88} = 1$
Hydrogen	17.64	1	$\frac{17.64}{1} = 17.64$	$\frac{17.64}{5.88} = 3$

Simplest ratio of whole numbers = N : H = 1 : 3

Hence, empirical formula is NH₃

Question 9

On analysis, a substance was found to contain

$$C = 54.54\%$$
, $H = 9.09\%$, $O = 36.36\%$

The vapour density of the substance is 44, calculate;

- (a) it's empirical formula, and
- (b) it's molecular formula

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Carbon	54.54	12	$\frac{54.54}{12} = 4.545$	$\frac{4.545}{2.275} = 1.99 = 2$

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Hydrogen	9.09	1	$\frac{9.09}{1} = 9.09$	$\frac{9.09}{2.275} = 3.99 = 4$
Oxygen	36.36	16	$\frac{36.36}{16} = 2.275$	$\frac{2.275}{2.275} = 1$

Simplest ratio of whole numbers = C : H : O = 2 : 4 : 1

Hence, empirical formula is C₂H₄O

Empirical formula weight = 2(12) + 4(1) + 16 = 24 + 4 + 16 = 44

V.D. = 44

Molecular weight = $2 \times V.D. = 2 \times 44 = 88$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{88}{44} = 2$$

So, molecular formula = $(C_2H_4O)_2 = C_4H_8O_2$

Question 10

An organic compound, whose vapour density is 45, has the following percentage composition H = 2.22%, O = 71.19% and remaining carbon.

Calculate,

- (a) it's empirical formula, and
- (b) it's molecular formula

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Hydrogen	2.22	1	$\frac{2.22}{1} = 2.22$	$\frac{2.22}{2.21} = 1$
Oxygen	71.19	16	$\frac{71.19}{16} = 4.44$	$\frac{4.44}{2.21} = 2$
Carbon	26.59	12	$\frac{26.59}{12} = 2.21$	$\frac{2.21}{2.21} = 1$

Simplest ratio of whole numbers = H : O : C = 1 : 2 : 1

Hence, empirical formula is CHO₂

Empirical formula weight = $12 + 1 + (2 \times 16) = 13 + 32 = 45$

V.D. = 45

Molecular weight = $2 \times V.D. = 2 \times 45 = 90$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{90}{45} = 2$$

So, molecular formula = $2(CHO_2) = C_2H_2O_4$

Question 11

An organic compound contains 4.07% hydrogen, 71.65% chlorine and remaining carbon. Its molar mass is 98.96. Find its,

- (a) Empirical formula
- (b) Molecular formula

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Hydrogen	4.07	1	$\frac{4.07}{1} = 4.07$	$\frac{4.07}{2.01} = 2$

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
chlorine	71.65	35.5	$\frac{71.65}{35.5} = 2.01$	$\frac{2.01}{2.01} = 1$
Carbon	24.28	12	$\frac{24.28}{12} = 2.02$	$\frac{2.02}{2.01} = 1$

Simplest ratio of whole numbers = H : Cl : C = 2 : 1 : 1

Hence, empirical formula is CH2Cl

Empirical formula weight = $12 + (2 \times 1) + 35.5 = 49.5$ molar mass = 98.96

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{98.96}{49.5} = 1.99 = 2$$

So, molecular formula = $2(CH_2CI) = C_2H_4CI_2$

Question 12

A hydrocarbon contains 4.8 g of carbon per gram of hydrogen. Calculate

- (a) the gram atom of each
- (b) find the empirical formula
- (c) find molecular formula, if it's vapour density is 29.

Answer

(a) Given, hydrocarbon contains 4.8 g of carbon per gram of hydrogen

Gram atom =
$$\frac{\text{Mass of element}}{\text{Atomic mass}}$$

$$\therefore \text{ g atom of carbon} = \frac{4.8}{12} = \textbf{0.4} \text{ and}$$

g atom of hydrogen =
$$\frac{1}{1}$$
 = 1

(b)

Element	Mass	At. wt.	Gram atoms	Simplest ratio
Hydrogen	1	1	$\frac{1}{1} = 1$	$\frac{1}{0.4} = \frac{5}{2}$
Carbon	4.8	12	$\frac{4.8}{12} = 0.4$	$\frac{0.4}{0.4} = 1$

Simplest ratio of whole numbers = H : $C = \frac{5}{2}$: 1 = 5 : 2

Hence, empirical formula is C₂H₅

(c) Empirical formula weight =
$$(2 \times 12) + (5 \times 1) = 24 + 5 = 29$$

$$V.D. = 29$$

Molecular weight = $2 \times V.D. = 2 \times 29 = 58$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{58}{29} = 2$$

So, molecular formula = $2(C_2H_5) = C_4H_{10}$

Question 13

0.2 g atom of silicon combine with 21.3 g of chlorine. Find the empirical formula of the compound formed.

Answer

 $Gram \ atom = \frac{Mass \ of \ element}{Atomic \ mass}$

g atom of silicon = $0.2 = \frac{\text{Mass of silicon}}{28}$

 \therefore Mass of silicon = 5.6 g and

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Mass of chlorine = 21.3 g

Element	Mass	At. wt.	gram atoms	Simplest ratio
Silicon	5.6	28	$\frac{5.6}{28} = 0.2$	$\frac{0.2}{0.2} = 1$
Chlorine	21.3	35.5	$\frac{21.3}{35.5} = 0.6$	$\frac{0.6}{0.2} = 3$

Simplest ratio of whole numbers = Si : Cl = 1 : 3

Hence, empirical formula is SiCl₃

Question 14

A gaseous hydrocarbon contains 82.76% of carbon. Given that it's vapour density is 29, find it's molecular formula.

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Carbon	82.76	12	$\frac{82.76}{12} = 6.89$	$\frac{6.89}{6.89} = 1$
Hydrogen	17.24	1	$\frac{17.24}{1} = 17.24$	$\frac{17.24}{6.89} = \frac{5}{2}$

Simplest ratio of whole numbers = C : H = 1 : $\frac{5}{2}$ = 2 : 5

Hence, empirical formula is C₂H₅

Empirical formula weight = 2(12) + 5(1) = 29

V.D. = 29

Molecular weight = $2 \times V.D. = 2 \times 29$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{2 \times 29}{29} = 2$$

∴ Molecular formula = $n[E.F.] = 2[C_2H_5] = C_4H_{10}$

Question 15

In a compound of magnesium (Mg = 24) and nitrogen (N = 14), 18 g of magnesium combines with 7g of nitrogen. Deduce the simplest formula by answering the following questions.

- (a) How many gram-atoms of magnesium are equal to 18g?
- (b) How many gram-atoms of nitrogen are equal to 7g of nitrogen?
- (c) Calculate simple ratio of gram-atoms of magnesium to gram-atoms of nitrogen and hence the simplest formula of the compound formed.

Answer

(a) Gram atom =
$$\frac{\text{Mass of element}}{\text{Atomic mass}}$$

∴ g atom of magnesium =
$$\frac{18}{24} = \frac{3}{4}$$

Hence, $\frac{3}{4}$ gram atoms of magnesium are equal to 18g of magnesium.

(b) g atom of nitrogen =
$$\frac{7}{14} = \frac{1}{2}$$

Hence, $\frac{1}{2}$ gram atoms of nitrogen are equal to 7g of nitrogen.

(c) simple ratio of gram-atoms of magnesium to gram-atoms of nitrogen

$$=\frac{\frac{3}{4}}{\frac{1}{2}}=\frac{3}{2}=$$
 magnesium : nitrogen

So, the formula is Mg_3N_2

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Question 16

Barium chloride crystals contain 14.8% water of crystallisation. Find the number of molecules of water of crystallisation per molecule.

Answer

Barium chloride = $BaCl_2.xH_2O$

Molecular weight of $BaCl_2.xH_2O = Ba + 2Cl + x(2H + O)$

$$= 137 + (2 \times 35.5) + x(2+16)$$

$$= 137 + (2 \times 35.5) + \times (2+16)$$

$$= 137 + 71 + 18x$$

$$=(208+18 x)$$

(208 + 18 x) contains 14.8% of water of crystallisation in BaCl2.x H₂O

$$\therefore$$
 14.8% of (208 + 18 x) = 18x

$$\left[\frac{14.8}{100}\right] \times \left[208 + 18 \text{ x}\right] = 18x$$

$$[0.148 \times 208] + [0.148 \times 18x] = 18x$$

$$30.784 = 18x - [0.148 \times 18x]$$

$$30.784 = 18x - 2.664x$$

$$30.784 = 15.336x$$

$$x = \frac{30.784}{15.336} = 2$$

Hence, Barium chloride crystals contain 2 molecules of water of crystallisation per molecule.

Question 17

Urea is a very important nitrogenous fertilizer. It's formula is CON_2H_4 . Calculate the percentage of nitrogen in urea. (C = 12, O = 16, N = 14 and H = 1).

Answer

Molar mass of urea $(CON_2H_4) = 12 + 16 + 28 + 4 = 60$ g

Molar mass of nitrogen $(N_2) = 2 \times 14 = 28 \text{ g}$

60 g urea has mass of nitrogen = 28 g

∴ 100 g urea will have mass

$$=\frac{28\times100}{60}$$

= 46.67%

Question 18

Determine the formula of the organic compound if it's molecule contains 12 atoms of carbon. The percentage compositions of hydrogen and oxygen are 6.48 and 51.42 respectively.

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Oxygen	51.42	16	$\frac{51.42}{16} = 3.21$	$\frac{3.21}{3.21} = 1$
Hydrogen	6.48	1	$\frac{6.48}{1} = 6.48$	$\frac{6.48}{3.21} = 2$
Carbon	42.1	12	$\frac{42.1}{12} = 3.50$	$\frac{3.50}{3.21} = 1$

Simplest ratio of whole numbers = O: H: C = 1:2:1

Hence, empirical formula is CH2O

Since the compound has 12 atoms of carbon, so the formula is $C_{12}H_{24}O_{12}$.

Question 19(a)

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

A compound with empirical formula AB₂, has the vapour density equal to it's empirical formula weight. Find it's molecular formula.

Answer

Empirical formula = AB_2

Empirical formula weight = V.D.

Molecular weight = $2 \times V.D.$

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} n = \frac{2 \text{ x V.D.}}{\text{V.D.}} n = 2$$

∴ Molecular formula = $n[E.F.] = 2[AB_2] = A_2B_4$

Question 19(b)

A compound with empirical formula AB has vapour density three times it's empirical formula weight. Find the molecular formula.

Answer

Given,

Empirical formula = AB

V.D. = 3 x Empirical formula weight

Hence, Empirical formula weight = $\frac{V.D.}{2}$

and we know, Molecular weight = $2 \times V.D.$

Substituting in the formula for n we get,

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} n = \frac{2 \text{ x V.D.}}{\frac{\text{V.D.}}{3}} n = \frac{3 \text{ x 2 x V.D.}}{\text{V.D.}} n = 6$$

: Molecular formula = $n[E.F.] = 6[AB] = A_6B_6$

Question 19(c)

10.47 g of a compound contains 6.25 g of metal A and rest non-metal B. Calculate the empirical formula of the compound (At. wt of A = 207, B = 35.5)

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Metal A	6.25	207	$\frac{6.25}{207} = 0.03$	$\frac{0.03}{0.03} = 1$
Non-metal B	4.22	35.5	$\frac{4.22}{35.5} = 0.11$	$\frac{0.11}{0.03} = 3.96 = 4$

Simplest ratio of whole numbers = A : B = 1 : 4

Hence, empirical formula is AB₄

Question 20

A hydride of nitrogen contains 87.5% percent by mass of nitrogen. Determine the empirical formula of this compound. *Answer*

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Nitrogen	87.5	14	$\frac{87.5}{14} = 6.25$	$\frac{6.25}{6.25} = 1$
Hydrogen	12.5	1	$\frac{12.5}{1}$ = 12.5	$\frac{12.5}{6.25} = 2$

Simplest ratio of whole numbers = N : H = 1 : 2

Hence, empirical formula is NH₂

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

 $HNO_3 \rightarrow$

 $Ca(NO_3)_2$

40 + 2(14) + 6(1640 + 28 + 96

164 g

Question 21

A compound has O = 61.32%, S = 11.15%, H = 4.88% and Zn = 22.65%. The relative molecular mass of the compound is 287 a.m.u. Find the molecular formula of the compound, assuming that all the hydrogen is present as water of crystallisation.

Answer

Element	% composition	At. wt.	Relative no. of atoms	Simplest ratio
Zn	22.65	65	$\frac{22.65}{65} = 0.3484$	$\frac{0.3484}{0.3484} = 1$
S	11.15	32	$\frac{11.15}{32} = 0.3484$	$\frac{0.3484}{0.3484} = 1$
O	61.32	16	$\frac{61.32}{16} = 3.832$	$\frac{3.832}{0.3484} = 10.99 = 11$
Н	4.88	1	$\frac{4.88}{1} = 4.88$	$\frac{4.88}{0.3484} = 14$

Simplest ratio of whole numbers = Zn : S : O : H = 1 : 1 : 11 : 14

Hence, empirical formula is ZnSO₁₁H₁₄

Molecular weight = 287

Empirical formula weight = 65 + 32 + 11(16) + 14(1) = 65 + 32 + 176 + 14 = 287

$$n = \frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{287}{287} = 1$$

Molecular formula = $n[E.F.] = 1[ZnSO_{11}H_{14}] = ZnSO_{11}H_{14}$

Since all the hydrogen in the compound is in combination with oxygen as water of crystallization.

Therefore, 14 atoms of hydrogen and 7 atoms of oxygen = 7H₂O and hence, 4 atoms of oxygen remain.

∴ Molecular formula is ZnSO₄.7H₂O.

Exercise 5D

Question 1

The reaction between 15 g of marble and nitric acid is given by the following equation:

$$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$$

Calculate:

- (a) the mass of anhydrous calcium nitrate formed
- (b) the volume of carbon dioxide evolved at S.T.P.

Answer

$$CaCO_3 + 2$$

 $40 + 12 + 3(16)$
 $= 40 + 12 + 48$
 $= 100 g$

100 g of CaCO₃ produces = 164 g of Ca(NO₃)₂

∴ 15 g CaCO₃ will produce =
$$\frac{164}{100}$$
 x 15

= 24.6 g

Hence, mass of anhydrous calcium nitrate formed = 24.6 g

∴ 15 g of CaCO₃ will produce =
$$\frac{22.4}{100}$$
 x 15

= 3.36 litres of CO₂

Question 2

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

66 g of ammonium sulphate is produced by the action of ammonia on sulphuric acid.

Write a balanced equation and calculate:

- (a) Mass of ammonia required.
- (b) The volume of the gas used at S.T.P.
- (c) The mass of acid required.

Answer

132 g ammonium sulphate is produced by 34 g of NH₃

∴66 g ammonium sulphate is produced by $\frac{34}{132}$ x 66 = 17 g of NH₃

Hence, 17g of NH₃ is required.

- (b) 132 g ammonium sulphate uses 2 x 22.4 L of gas
- ∴ 66 g of ammonium sulphate will use $\frac{2 \times 22.4}{132}$ x 66 = **22.4 litres**
- (c) For 132 g ammonium sulphate 98 g of acid is required
- ∴ For 66 g ammonium sulphate $\frac{98}{132}$ x 66 = 49 g

Hence, 49g of acid is required.

Question 3

The reaction between red lead and hydrochloric acid is given below:

$$Pb_3O_4 + 8HCl \rightarrow 3PbCl_2 + 4H_2O + Cl_2$$

Calculate

- (a) the mass of lead chloride formed by the action of 6.85 g of red lead,
- (b) the mass of the chlorine and
- (c) the volume of chlorine evolved at S.T.P.

Answer

(a)

 $685 \text{ g of Pb}_3\text{O}_4 \text{ gives} = 834 \text{ g of PbCl}_2$

$$=\frac{834}{685}$$
 x 6.85 = **8.34** g

(b) 685g of Pb_3O_4 gives = 71g of Cl_2

$$=\frac{71}{685}$$
 x 6.85 = **0.71** g of Cl₂

(c) 685 g of Pb₃O₄ produces 22.4 L of Cl₂

∴ 6.85 g of Pb₃O₄ will produce

$$\frac{22.4}{685}$$
 x 6.85 = **0.224** L of Cl₂

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

Question 4

Find the mass of KNO₃ required to produce 126 kg of nitric acid. Find whether a larger or smaller mass of NaNO₃ is required for the same purpose.

$$KNO_3 + H_2SO_4 \longrightarrow KHSO_4 + HNO_3$$

 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$

Answer

$$KNO_3$$
 + H_2SO_4 \rightarrow $KHSO_4$ + HNO_3
 $39 + 14 + 3(16)$ $1 + 14 + 3(16)$
 $= 39 + 14 + 48$ $= 101 \, g$ $= 63 \, g$

63 g of HNO₃ is formed by 101 g of KNO₃

: 126000 g of HNO₃ is formed by $\frac{101}{63}$ x 126000

= 202000 g = 202 kg

Similarly,

$$NaNO_3$$
 + H_2SO_4 \rightarrow $NaHSO_4$ +HNO₃
23 + 14 + 3(16) 1 + 14 + 3(16)
= 23 + 14 + 48 = 85 g = 63 g

63 g of HNO₃ is formed by 85 g of NaNO₃

∴ 126000 g of HNO₃ is formed by $\frac{85}{63}$ x 126000

= 170000 g = 170 kg

So, a smaller mass of NaNO₃ is required.

Question 5

Pure calcium carbonate and dilute hydrochloric acid are reacted and 2 litres of carbon dioxide was collected at 27°C and normal pressure.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

Calculate:

- (a) The mass of salt required.
- (b) The mass of the acid required

Answer

(a) Given,

$$CaCO_3$$
 + 2HCl \rightarrow CaCl₂ +H₂O + CO₂
 $40 + 12 + 3(16)$ 2[1 + 35.5] 1 mole
= 40 + 12 + 48 = 73 g
= 100 g

First convert the volume of carbon dioxide to STP:

$$V_1 = 2 L$$

$$T_1 = 27 + 273 \text{ K} = 300 \text{ K}$$

 $T_2 = 273 \text{ K}$

$$V_2 = ?$$

Using formula:

$$\frac{\mathbf{V_1}}{\mathbf{T_1}} = \frac{\mathbf{V_2}}{\mathbf{T_2}}$$

Substituting in the formula,

$$\frac{2}{300} = \frac{V_2}{273}$$

$$V_2 = \frac{2}{273} \times 273$$

 $V_2 = \frac{2}{300} \times 273 = 1.82 \text{ L}$

As, 22.4 L of carbon dioxide is obtained using 100 g CaCO₃

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

- \therefore 1.82 L of carbon dioxide is obtained from $\frac{100}{22.4}$ x 1.82
- = 8.125 g of CaCO₃
- (b) Similarly, 22.4 L of carbon dioxide is obtained using 73 g of acid
- \therefore 1.82 L of carbon dioxide is obtained from $\frac{73}{22.4}$ x 1.82
- = 5.93 g of acid

Question 6

Calculate the mass and volume of oxygen at S.T.P., which will be evolved on electrolysis of 1 mole (18 g) of water

$$2H_2O \rightarrow 2H_2 + O_2$$

2(2 + 16) 2(16)
36g 32g

36 g of water produces 32 g of O_2

∴ 18 g of water will produced

$$= \frac{32}{36} \times 18 = 16 \text{ g of } O_2$$

$$2H_2O \longrightarrow 2H_2$$

$$2 \text{ mole}$$

$$+ O_2$$

$$1 \text{ mole}$$

2 moles of water produces 1 mole of oxygen

∴ 1 mole of water will produce $\frac{1}{2} \times 1 = 0.5$ moles of O₂

1 mole of O₂ occupies 22.4 L volume

- $\therefore 0.5$ moles will occupy = 22.4×0.5
- = 11.2 L

Question 7

1.56 g of sodium peroxide reacts with water according to the following equation:

$$2Na_2O_2 + 2H_2O \longrightarrow 4NaOH + O_2$$

Calculate:

- (a) mass of sodium hydroxide formed,
- (b) volume of oxygen liberated at S.T.P.
- (c) mass of oxygen liberated.

Answer

$$2\text{Na}_2\text{O}_2 + 2$$
 $H_2\text{O} \rightarrow 4\text{NaOH}$ $2[2(23) + 2(16)]$ $4(23 + 16 + 1)$ 156g 160g

- (a) 156 g of sodium peroxide produces 160 g of sodium hydroxide
- \therefore 1.56 g of sodium peroxide will produce $\frac{160}{156}$ x 1.56
- = 1.6 g of sodium hydroxide
- (b) 156 g of sodium peroxide produces 22.4 L of oxygen
- \therefore 1.56 g of sodium peroxide will produce $\frac{22.4}{156}$ x 1.56
- = 0.224 L

Converting L to cm³

As $1 L = 1000 \text{ cm}^3$

So, $0.224 L = 224 cm^3$

- (c) 156 g of sodium peroxide produces 32 g of oxygen
- ∴ 1.56 g of sodium peroxide will produce $\frac{32}{156}$ x 1.56 = **0.32** g

Ouestion 8

(a) Calculate the mass of ammonia that can be obtained from 21.4 g of NH₄Cl by the reaction:

A PIONEER INSTITUTE FOR BOARD PREPARATION

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN Contact: 8630608162/7906218686 App:SaarthEd

 $2NH_4Cl + Ca(OH)_2 \longrightarrow CaCl_2 + 2H_2O + 2NH_3$

(b) What will be the volume of ammonia when measured at S.T.P?

Answer

$$2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2$$
 $2[14 + 4(1) + 35.5]$
 $107g$

- (a) 107 g NH₄Cl gives 34 g of NH₃
- ∴ 21.4 g NH₄Cl will give $\frac{34}{107}$ x 21.4
- = 6.8 g of NH₃
- (b) Volume of ammonia produced by 107 g NH₄Cl = 2 x 22.4 L
- ∴ Volume of ammonia produced by 21.4 g NH₄Cl = $\frac{2 \times 22.4}{107}$ x 21.4
- = 8.96 L

Question 9

Aluminium carbide reacts with water according to the following equation.

$$Al_4C_3 + 12H_2O \longrightarrow 3CH_4 + 4Al (OH)_3$$

- (a) What mass of aluminium hydroxide is formed from 12g of aluminium carbide?
- (b) What volume of methane is obtained from 12g of aluminium carbide?

Answer

$$Al_4C_3$$
 + $12H_2O$ \rightarrow $4Al (OH)_3$ + $3CH_4$
 $4(27) + 3(12)$ 4(78) 3(22.4)
 $= 144 g$ $= 312 g$ = 67.2 lit.

144 g of aluminium carbide forms 312 g of aluminium hydroxide.

∴ 12 g of aluminium carbide will form $\frac{312}{144}$ x 12 = 26 g of aluminium hydroxide

Hence, 26 g of aluminium hydroxide is formed.

- (ii) 144 g of aluminium carbide forms 67.2 lit of methane.
- ∴ 12 g of aluminium carbide will form $\frac{67.2}{144}$ x 12 = 5.6 lit.

Hence, vol. of methane obtained = 5.6 L

Question 10

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$$

0.02 moles of pure MnO₂ is heated strongly with conc. HCl. Calculate:

- (a) mass of MnO₂ used,
- (b) moles of salt formed,
- (c) mass of salt formed,
- (d) moles of chlorine gas formed,
- (e) mass of chlorine gas formed,
- (f) volume of chlorine gas formed at S.T.P.,
- (g) moles of acid required,
- (h) Mass of acid required.

Answer

(a) 1 mole of MnO₂ weighs 87 g

∴ 0.02 mole will weigh $\frac{87}{1}$ x 0.02 = **1.74** g

DEVLOK COLONY, NEAR ST. JUDE'S SCHOOL, SHIMLA BYPASS ROAD, DEHRADUN

Contact: 8630608162/7906218686 App:SaarthEd

(b) 1 mole MnO₂ gives 1 mole of MnCl₂

∴ 0.02 mole MnO₂ will give **0.02** mole of MnCl₂

(c) As, 1 mole MnCl₂ weighs 126 g

 $\therefore 0.02$ mole MnCl₂ will weigh $\frac{126}{1}$ x 0.02 = 2.52 g

(d) 1 mole MnO₂ gives 1 mole of Cl₂

∴ 0.02 mole MnO₂will form **0.02 moles** of Cl₂

(e) 1 mole of Cl₂ weighs 71 g

∴ 0.02 mole will weigh $\frac{71}{1}$ x 0.02 = **1.42** g

(f) 1 mole of chlorine gas has volume 22.4 dm³

 \therefore 0.02 mole will have volume $\frac{22.4}{1}$ x 0.02 = **0.448 dm**³

(g) 1 mole MnO₂ requires 4 moles of HCl

∴ 0.02 mole MnO₂ will require $\frac{4}{1}$ x 0.02 = **0.08 mole**

(e) Mass of 1 mole of HCl = 36.5 g

: Mass of 0.08 mole = $0.08 \times 36.5 = 2.92$ g

Question 11

Nitrogen and hydrogen react to form ammonia.

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

If 1000 g of H₂ react with 2000 g of N₂:

(a) Will any of the two reactants remain unreacted? If yes, which one and what will be it's mass?

(b) Calculate the mass of ammonia (NH₃) that will be formed?

Answer

(a) 28 g of nitrogen requires 6 g of hydrogen

 \therefore 2000 g of nitrogen requires $\frac{6}{28}$ x 2000

= 428.57 g of hydrogen.

So mass of hydrogen left unreacted = 1000 - 428.57 = 571.42 g

571.42 g of hydrogen is left unreacted.

(b) 28 g of nitrogen forms 34 g NH₃

 \therefore 2000 g of nitrogen forms $\frac{34}{28}$ x 2000

= 2428.57 g of NH₃